Optimization Anthropomorphic Tendon-driven Robotic Hands Can Exceed Human Grasping Capabilities following Anthropomorphic Tendon-driven Robotic Hands Can Exceed Human Grasping Capabilities following Optimization
نویسندگان
چکیده
How functional versatility emerges in vertebrate limbs in spite of their anatomical complexity is a longstanding question. In particular, fingers are actuated by numerous muscles pulling on tendons following intricate paths. In contrast, the tendon-driven robotic hands with intuitive tendon routings preferred by roboticists for their ease of analysis and control do not perform at the level of their biological counterparts. Thus there is much debate on whether and how the anatomy of the human hand contributes to grasp capabilities. These parallel questions in biology and robotics arise partly because it is unclear how the number and routing of tendons offer functional benefits. We use a novel computational approach that analyzes tendon-driven systems and quantifies grasp quality to compare the precision grasp capabilities of thousands of robotic index finger and thumb designs vs. the capabilities measured in human hands. Our exhaustive search finds that neither the symmetrical designs sometimes preferred by roboticists nor randomly generated designs approach the grasp capabilities of the human hand (they are on average 73% weaker). However, optimizing for anatomically plausible asymmetry in joint centers, tendon routings, and maximal tendon tensions produces designs that can exceed the human hand by 13–45%, and outperform the preferred robotic designs by up to 435%. Thus, the grasp capabilities of prosthetic or anthropomorphic hands can be greatly improved by judiciously altering design parameters, at times in counter-intuitive ways. Moreover we conclude that, in addition to its other capabilities, the human hand’s anatomy is very advantageous for precision grasp as it greatly outperforms numerous alternative robotic designs.
منابع مشابه
Anthropomorphic tendon-driven robotic hands can exceed human grasping capabilities following optimization
How functional versatility emerges in vertebrate limbs in spite of their anatomical complexity is a longstanding question. In particular, fingers are actuated by numerous muscles pulling on tendons following intricate paths. In contrast, tendondriven robotic hands with intuitive tendon routings preferred by roboticists for their ease of analysis and control do not perform at the level of their ...
متن کاملTendon Arrangement and Muscle Force Requirements for Humanlike Force Capabilities in a Robotic Finger
Human motion can provide a rich source of examples for use in robot grasping and manipulation. Adapting human examples to a robot manipulator is a difficult problem, however, in part due to differences between human and robot hands. Even hands that are anthropomorphic in external design may differ dramatically from the human hand in ability to grasp and manipulate objects due to internal design...
متن کاملSpecial Issue on the Mechanics and Design of Robotic Hands
There has been a renewed interest in recent years to work towards robotic hands that are effective in addressing the needs of modern robotic systems. As robots increasingly move out of the lab and into unstructured environments, the need for hands designed to function under the uncertainty and wide range of conditions associated with those environments has become more pressing. This special iss...
متن کاملGrasp analysis of a four-fingered robotic hand based on Matlab simmechanics
The structure of the human hand is a complex design comprising of various bones, joints, tendons, and muscles functioning together in order to produce the desired motion. It becomes a challenging task to develop a robotic hand replicating the capabilities of the human hand. In this paper, the analysis of the four-fingered robotic hand is carried out where the tendon wires and a spring return me...
متن کاملThe Role of Morphology of the Thumb in Anthropomorphic Grasping: A Review
The unique musculoskeletal structure of the human hand brings in wider dexterous capabilities to grasp and manipulate a repertoire of objects than the non-human primates. It has been widely accepted that the orientation and the position of the thumb plays an important role in this characteristic behavior. There have been numerous attempts to develop anthropomorphic robotic hands with varying le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013